Processing
Natural Visual Stimuli
Using Neural Networks

Thomas Dubendorfer, Kai Jauslin, ETH Zurich
24th March 2000

Dr. Peter Kénig, INI UNI/ETH ZUrich
Konrad Kérding, INI UNI/ETH Zirich
Dr. Jakob Bernasconi, ETH Zurich

Processing Natural Visual Stimuli Using Neural
Networks

Thomas Diibendorfer, Kai Jauslin, ETH Ziirich

Supervisors
Dr. Peter Konig, INI UNI/ETH Ziirich
Konrad Kérding, INI UNI/ETH Ziirich
Dr. Jakob Bernasconi, ETH Ziirich

15th May 2000

2 CONTENTS

Contents
1 Natural visual stimuli and neural networks 4
1.1 Imtroduction. 4
2 Collecting natural visual stimuli 5
2.1 S0UrCeS e 5
2.2 Digitizingo 5
2.21 Procedure)
2.2.2 Fallacies 6
2.3 Image file formats L. 6
23.1 TIFF (XTIF) 6
23.2 JPEG (*JPG) 7
233 AVI(XAVI). 7
2.4 Archiving 9
241 descmat oo 9
2.5 Image Gallery 10
3 Preprocessing images for neural networks 13
3.1 Biological background for preprocessing 13
3.2 Edgedetection oL 14
321 Canny 15
3.2.2 Evaluation 0oL, 16
3.2.3 Antagonistic filtero 19
3.2.4 Implemented edge detection filters 24
3.3 KUIM Toolkit 24
3.3.1 General o 24
3.3.2 Building your own filters. 26
3.4 Fallacies 26
4 Introduction to the NVS framework 27
4.1 Generalideas oL oo 27
4.2 How to use the framework 28
421 Control Panel 28
4.2.2 Inputsettings, 28
4.2.3 Network settings 29
424 Filterso 30
4.2.5 Framework Lo oL 31
4.2.6 Display menuoption 31

4.2.7 Starting and stopping the simulation 32

CONTENTS 3

5 Statistics 34
5.1 Measurements e e e 34
5.2 2D discrete FET oo 34
5.3 Improving 2D discrete FFT 34
5.4 Batch statistics using the NVS framework 34
5.5 Results-Plots 37
5.6 Results- Values. 39

6 NVS Implementation 41
6.1 Module overview 41
6.2 Interfaces 41
6.3 Description of global variable structs 42
6.4 Description of individual modules 47

6.4.1 nvs. e e 48
6.4.2 initParameters 48
6.4.3 controlPanel 48
6.4.4 controlPanel Callback 48
6.4.5 mainLoop Lo 49
6.4.6 initlnput Lo Lo oo 50
6.4.7 initNetwork, 51
6.4.8 initFilters 51
6.4.9 chooselmage, o1
6.4.10 filterlmage 52
6.4.11 calcStatistics 52
6.4.12 setNetworkInput 52
6.4.13 feedForward 52
6.4.14 learn e 53
6.4.15 grayscale 53
6.4.16 statistic 54
6.4.17 inputSettings, networkSettings, filterSettings, frame-
workSettings oL o4
6.4.18 drawActivity, drawInput, draw WeightsWinner, showOver-
allStatistics, showSingleStatistics o4

A Tools 55
A1l nameplus.plo o 55
A2 batch.pl 56

B Bibliography 57
B.1 Image Processing - Mathematics 57
B.2 TImage Processing - Biological Background 58
B.3 Image Processing - Neural networks 59

C Acknowledgements 60

4 1 NATURAL VISUAL STIMULI AND NEURAL NETWORKS

1 Natural visual stimuli and neural networks

1.1 Introduction

Vision research far too often still tries to keep the dirty environment we live
in out of the clean labs. It restricts itself to processing mostly synthetic
images. However if we want to build smart image processing tools we have
to deal with natural visual stimuli instead.

There are many approaches to neural networks that recognize clean syn-
thetic images (e.g. arbitrary oriented bars or filled circles). When working
with images of visual stimuli taken directly from the real nature we live in,
those methods often cannot be applied anymore as the assumptions made
for the ’clean lab’ algorithms do no longer hold true.

This semester project tries to transfer a new learning rule from the lab to
the real world. We collected representative natural visual stimuli, digitized
the material, investigated various algorithms for preprocessing the images,
calculated statistics on the data, built a generic NVS (natural visual stimuli)
framework with MATLAB to support interactive processing of the images
and feeding them to a configurable neural network and finally adopted the
unsupervised learning rule “learning with two sites of synaptic integration”
(cf. [19]) that was developed at the Institute of Neuroinformatics INT at the
University/ETH of Zurich by Konrad Koérding and Dr. Peter Konig.

Chapter 1-3 discuss various aspects concerning image preprocessing of nat-
ural visual stimuli for neural networks. Chapter 4 and 6 describe the NVS
framework and its implementation. Chapter 5 shows some interesting statis-
tics about the collected natural visual stimuli.

2 Collecting natural visual stimuli

In order to process any natural visual stimuli, we first had to create videos,
digitize and convert them to an appropriate file format and provide a con-
venient way to work with sequences of images.

2.1 Sources

At the beginning of our semester project was the interesting question: “What
is a natural visual stimulus?”. As the stimulus has to be visual we have to
look for images as sources. The term natural implies that we should defi-
nitely not create simple geometric forms like bars or filled circles on a clean
background. The easiest solution would therefore be to get a camcorder
and record a video of a scene in nature. We ran off to the Irchelpark (a
park near the University of Zurich) armed with an analog camcorder and
recorded some reed and bubbles. On another day we recorded trees, leaves,
sculptures and a chair in a garden covered with snow.

Later we extended the notion of what natural should be to anything a hu-
man, animal or robot sees during daytime. This includes films on TV (e.g.
cartoons) and play tools (e.g. duplos, wooden play tools). We took se-
quences from a Marsupilami and from a Tom & Jerry cartoon. At the
Institute of Neuroinformatics (INI) we found a robot called Khepera that
had a colour camera mounted on it. We seized this occasion and grabbed
some image sequences from his view point of a world full of play tools.

In the end we had a total of about 55’000 images grouped into three cate-
gories (this is about 30 minutes of video at 30 frames per second):

e Nature (Winter, Reed and bubbles)
e Cartoon (Marsupilami, Tom & Jerry)

e Khephera (Wooden play tools, duplos)

2.2 Digitizing
2.2.1 Procedure

The procedure of digitizing analog video material is quite simple. You need
an analog/digital video converter card for your computer and a frame grab-
bing software. Then you connect your camcorder or video recorder directly
to your video card and record the video stream. The frame grabbing soft-
ware we used was Hauppage’s WinTV that only supported the AVI video
format.

We were primarily interested in having a sequence of images instead of hav-
ing one large video file. Video files (and especially AVI files) can easily grow

6 2 COLLECTING NATURAL VISUAL STIMULI

to gigabytes in size. A 320x240 pixel sized video stream with 30 frames per
seconds and 24 bits of colours produces about 150 Megabytes of data per
minute. Adobe’s Premiere video software was used to convert the AVI-files
to sequences of image files named as <prefix><sequenceNr>.tif. We chose
the TIFF format to not cause any compression errors to the image files so
they may be used for further experiments.

Finally as we intended to use the KUIM image processing framework that
works on JPEG images we used Paint Shop Pro’s batch mode to convert
the TIFF images to the JPEG format using the lowest possible compression
ratio.

All the digitized image files (AVI, TIFF, JPEG) consumed on the whole
about 22 gigabytes of storage. You can imagine what this means for han-
dling purposes. On a standard 10 Mbit/s local Ethernet it takes almost 2.5
hours to transfer the data to another computer. Therefore we burnt some
CD-ROMs with the JPEG files on it what allowed us to use the images any-
where. Details about the various image file formats we used can be found
at 2.3.

2.2.2 Fallacies

Unfortunately, digitizing is a cumbersome task. First of all you always
deal with a huge amount of data that slows all operations down. Secondly
there are diverse factors that can badly influence the quality of the digitized
images. A mobile phone that goes off during digitization or a computer
that is switched on can cause wrong colours, lost synchronization or other
nasty effects on the digitized image. Care also has to be taken to choose
good quality video plugs (especially when using a T-piece to connect to a
separate monitor). Depending on the video card and software it may happen
that the last few lines of the digitized image displays patterns of dark bars.
This mostly has to do with synchronization problems of your video card.

2.3 Image file formats
2.3.1 TIFF (*.TIF)

TIFF (Tag Image File Format), pronounced “tiff”, was originally developed
by Aldus Corporation to save images created by scanners, frame grabbers,
and photo editing programs. This format has been widely accepted and sup-
ported as an image transfer format not tied to specific scanners, printers,
or computer display hardware. TIFF is also a popular format for desktop
publishing applications. There are several variations of the format, called
extensions, so you may have occasional problems opening one from another
source. Some versions are compressed using the LZW or other lossless meth-
ods. TIFF files support up to 24-bit of colours ([15]).

2.3 Image file formats 7

2.3.2 JPEG (*.JPG)

JPEG is widely used in digital cameras to compress still images. However,
it can also be used for movies and some digital still cameras let you capture
short video clips in this format. The advantage of this format is that it can
be played on many computer systems but it is CPU-intensive.

The JPEG (Joint Photographic Experts Group) format, pronounced “jay-
peg”, is by far the most popular format for the display of photographic
images on the Web. The term “JPEG” is often used to describe the JFIF
file format (JPEG File Interchange Format). JFIF is the actual file format
that contains an image compressed with the JPEG method. These newer
JFIF files originally used the JPG extension, however, the latest standard
calls for using a JIF extension instead. The format is optimized for the
display of photographs and doesn’t work as well as GIF for type or line
drawings (GIF is optimized for those). JPEG images have two distinctive
features:

e JPEG uses a lossy compression scheme but you can vary the amount
of compression and hence trade off file size for image quality, even
making extremely small files with poor quality.

e JPEG supports 24-bit of colours. GIF, the other format widely used
on the Web supports only 8-bits.

Compression is performed on blocks of pixels, eight on a side. You can
see these blocks when you use the highest levels of compression or greatly
enlarge the image. JPEG is a two pass compression and de-compression
algorithm. This means it takes longer to load and display than a GIF file.
You can save images in a progressive JPEG format that works somewhat
like an interlaced GIF. While a standard JPEG loads from top to bottom, a
progressive JPEG displays the entire image starting with the largest blocks.
This allows the image to be displayed first in low-resolution and then filled
in as more data arrives. When you save an image in this format, you can
specify the number of progressive scans. Don’t use JPEG to save original
images you expect to modify later. Every time you open one of these files,
and then save it again, the image is compressed. As you go through a series
of saves, the image becomes more and more degraded. Be sure to save your
originals is a loss-free format such as TIFF or BMP at maximum colour
depth. Also, when you save an image as a JPEG, the image on the screen
won’t reflect the compression unless you load the saved version ([16]).

2.3.3 AVI (*.AVI)

One of the most popular formats for presenting video is Microsoft’s AVI
format. This format was developed to play videos in the Windows environ-
ment. The ubiquituousness of the format has led to the development of a

8 2 COLLECTING NATURAL VISUAL STIMULI

vast array of resources to play, edit and capture video in AVI format. One
of the best things about AVT is this level of support.

The AVI format was developed by Microsoft as part of Video for Windows.
AVT stands for Audio Video Interleaved. The drivers and player come with
Microsoft Windows '95/’98 and NT, if you have not got them because you
use OS/2 or an Apple Macintosh you can get other drivers easily. It is
a special case of the RIFF (Resource Interchange File Format). RIFF is a
clone of the IFF format invented by Electronic Arts in 1984. It was invented
for Deluxe Paint on the Amiga, and when Deluxe Paint went to the PC, so
did IFF.

With software alone AVIs will play full motion video and audio in a small
window at about 15 frames per second. AVI uses a number of different
codecs. There were originally two codecs, Video 1 and RLE (run length
encoding), other codecs have been developed by third parties such as Indeo
and Cinepak. These codecs offer Mac compatibility and audio compression
(117)).

Advantages of AVI:

e AVI has a wide range of video qualities. It can exist in 256 to Millions
of colours encoding as well as support sound from 5kHz Mono to CD
quality stereo sound. Of course the payoff of using a small number
of colours and low quality sound is better MB/sec ratio. If you use
the cheapest rates available, AVI can deliver video at ratios as low as
0.03MB/sec. However if you use maximum settings, it can run as high
as 0.3 MB/sec. Depending on your needs in terms of quality and hard
drive space, AVI has a compromise for you.

e AVI and the media player come with Windows, so no drivers need to
be obtained. The Indeo drivers for the media player are better for
faster machines and will improve quality.

e AVI is a popular standard, many videos have been produced in the
format because of it’s non requirement of drivers.

e The quality of AVI files with good drivers and good hardware can be
quite impressive.

Disadvantages of AVI:

e Like most video formats, AVI can really take a bite out of your hard-
drive, if you want video of exceptional quality, be prepared to pay. AVI
can also be a little choppy if not encoded or decoded correctly. Faster
processors and special graphics accelerators help with this process.

e AVT’s are no longer developed by Microsoft, they have left it to third
parties for further development while they concentrate on other things.

2.4 Archiving 9

‘ Directory ‘ Description ‘
Cartoons
/t000203a/intro/intro* Tom & Jerry movie - Intro
/t000203b/house/house* Tom & Jerry movie - Scene with the
demolition of a house
/t000203¢/money/money* Tom & Jerry movie - Scene about
money

/t000203d/pictures/pictures* | Tom & Jerry movie - Scene where
pictures are looked at

/t000124¢/marsu/marsu* Marsupilami Cartoon - A bath for
Maurice (1st part)
/t000124d / water/water* Marsupilami Cartoon - A bath for

Maurice (2nd part)

Nature scenes
/t000124a/winter /winter* Garden and trees covered with snow
/t000124b/winter/lion* Lion sculpture, tree and a chair in a
garden covered with snow
/t000209a/bubbles/bubbles* | Reed and bubbles (Irchelpark)
Khepera
/t000124e/khepera/frame* Coloured wooden play tools
recorded from Kheperas perspective
/t000124f/bubbles/bubbles* | Coloured plastic duplos recorded
from Kheperas perspective

Table 1: Archive with digitized images

This could be good, but I think it will be bad because the third parties
have not got Microsoft’s budget, so they won’t want to take any risks.

2.4 Archiving

The TIFF images are stored in the path as stated in the table. The JPEG
version is in the /t000*/*_jpg/. .. directory. All sequence numbers have
size 4, padded with leading zeros. The images are of size 320x240 pixels
with 24 bit of colours and were grabbed at 30 frames per second.

2.4.1 desc.mat

In order to provide a convenient way to process the digitized images we pro-
vide a description file for each sequence of natural visual stimuli. The file
resides in the root folder of a sequence (e.g. /t000124a/desc.mat). The
file is called desc.mat and is a MATLAB binary file that can be read with
MATLAB’s load command and defines a variable subspace V_* with infor-
mation about the images.

10 2 COLLECTING NATURAL VISUAL STIMULI
‘ Name ‘ Description Class
V_author Name of the author char array
V_date Date of creation char array
V_desc [First Last Type]: Type of (sub)sequence(s) double array
V_files Subdirectory name and basename (file prefix) | struct array
V_sourcedesc | Details about image source struct array

Table 2: variables in desc.mat (image sequence description file for MATLAB)

‘ Name ‘ ‘ value
V_author = | Thomas Duebendorfer
V_date = | 24-Jan-2000
V_desc = | [0 4616 1]
V_files.prim_dirname | = | ’winter’
V_files.prim_basename | = | ’lion’
V_sourcedesc.desc = | Garden and trees covered with snow
V_sourcedesc.general | = | Images created from a video for the

semester project “Processing natural vi-
sual stimuli using neural networks” by Kai
Jauslin and Thomas Duebendorfer

Table 3: Sample variables in desc.mat

In MATLAB you get access to the variables stored in desc.mat by changing
into the directory where desc.mat resides and then executing ’load desc.mat’.
The command ’'whos’ lists you all currently set variables in the MATLAB
workspace. V_desc can hold arbitrary types. We only use type 1 to indicate
that the images with sequence numbers from ’first’ to ’last’ exist in the
subdirectory "V files.prim_dirname’ and have prefix 'V _files.prim_dirname’.
They all have a unique number in their name, e.g. lion0123.jpg. All images
that we digitized have size 320x240 pixel and 16 bit of colours. This can
also be determined when reading an image in MATLAB using the command
imread’.

2.5 Image Gallery

The following figures show some representative images of the archive we
created.

2.5 Image Gallery

Reed And Bubbles

T

Winter
/t000124a/winter/winter*.jpg
/t000124b/winter/lion*.jpg

Figure 1:

Tom & Jerry
/t000203a/intro/intro*.jpg
/t000203b/house/house*.jpg
/t000203c/money/money*.jpg
/t000203d/pictures/pictures*.jpg

/t000209a/bubbles/bubbles*.jpg

Nature images

0000 - 9062

0000 - 4474
0000 - 4616

0000 - 0124
0000 - 4892
0000 - 1240
0000 - 3281

11

Marsupilami - a bath for Maurice

/t000124c/marsu/marsu*.jpg
/t000124d/water/water*.jpg

0000 - 4194
0000 - 5408

Figure 2:

Cartoon images

12 2 COLLECTING NATURAL VISUAL STIMULI

Wooden Play Tools

/t000124e/khepera/frame*.jpg 0000 - 8753
Duplos
/t000124f/duplo/duplo*.jpg 0000 - 8540

LB SIS

Figure 3: Khepera images

13

3 Preprocessing images for neural networks

3.1 Biological background for preprocessing

David H. Hubel describes in [10] how a human reacts to visual stimuli. He
explains that even a single photon can be noticed by a cell in the retina and
transformed into an electric signal. This signal then travels through various
types of cells and is aggregated several times. Some retina cells, the lateral
geniculate nucleus (one on each side), and the visual cortex seem to do some
kind of edge detection.

{Corpus genicu-
latum laterale)

Radiatio optica
primary visual cortex

Figure 4: The process of seeing (image source: [10])

An interesting fact is that the worst visual stimulus is a constant light beam
like a pocket lamp provides it. The best one is a very small light beam that
switches on and off. The reason is that the cells are connected such that they
react excitatory to light in the center and inhibitatory to light outside the

14 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

center (and vice versa for other cell types). This allows the brain to connect
certain nerves to get the information “there is a line oriented in that way”
as figure 5 shows. This is also the reason why we will investigate some edge
detection algorithms and apply them for image preprocessing. The neural
network we want to feed the processed images to is located somewhere in
the visual cortex, so the signal was already “edge detected’ on its way to
the network.

Information specific to the cat’s visual stimuli processing (which is very
similar to the human’s processing) can be found in [11].

Figure 5: Edge detection by aggregation of neural signal.

3.2 Edge detection

Now we turn our attention to edge detection image filters. When we consult
some literature (e.g. [1]) about image processing we find many aproaches
that deal with edge detection. It seems to be very hard to create an al-
gorithm that works for all sorts of images equally well. Neither there is
consensus on what means that an edge detector works well.

In 1996 a group of the Computer Science & Engineering Department of Psy-
chology at the University of South Florida made an attempt on finding out
which edge detection algorithm is superior to others on different images (cf.
[3]). In a pragmatic way they presented a set of edge detected images to

3.2 Edge detection 15

different students. They had to rate which of several edge detection algo-
rithms produced the most useful output. Useful means that the spectator
recognizes as much information as possible in the edge detected image.
The choice of humans to rate it instead of using statistical properties for
algorithm rating is easy to understand: Who can do better interpretation
of images than a human?

3.2.1 Canny

Canny is one of the most common edge detection filters. It is described by
its inventor in [4] so we will not explain it in detail here.

Sometimes the images are filtered with canny (which produces an image with
many grey pixels) and thereafter a “zeros crossing” called method tries to
turn the picture into a black/white image and closed curves. Unfortunately
the ”zeros crossing” step can produce bad results if applied to natural visual
stimuli (cf. image bubble2283.jpg).

Zeros (zeros crossing on canny filter) looks as follows:
1. Smooth the image using the Gaussian filter with some fixed width
2. compute local gradient G

3. compute second directional derivative D in the direction of local gra-
dient

4. identify zero crossings of D, that is, closed contours defined by D = 0
and

5. accept or reject the resulting edges based on some signal-to-noise evalu-
ation technique.

Other widely used edge detectors (such as Sobel, finite difference and cubic
spline) rely on derivation.

Many neural network’s learning rules have severe difficulties learning with
input stimuli that have values close together (i.e. if all are gray and there
are no strong differences to lighter or darker pixels). Zeros crossing is one
method to help but unfortunately for some types of images this method is
not suited at all. And one of this unsuited types of images is scenes from
nature. We therefore created an own algorithm called antagonist (cf. 3.2.3)
that adapts to the input data and can also deal with natural visual stimuli.

16 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

3.2.2 Evaluation

The following figures show a selection of edge detection algorithms applied
to natural visual stimuli. The original was grayscaled and then processed
separatedly with canny and cubic spline derivation. The bottom row shows
the antagonistic filter (cf. 3.2.3) and zeros crossing applied to the edge de-
tected image.

canny derivation
(cubic spline)

75
g ;‘f//
N 1
s
low antagonist high antagonist high antagonist zeros crossing
on canny on canny on derivation on canny

Figure 6: Tom & Jerry Intro - intro0063. jpg

4

original canny derivation
(cubic spline)

[f"*_
low antagonist high antagonist high antagonist zeros crossing
on canny on canny on derivation on canny

Figure 7: Khepera duplos - duplo8219. jpg

3.2 Edge detection 17

denvaﬁoh)
(cubic spline)

original

I.__ .
low antagonist high antagonist zeros crossing
on canny on canny on derivation on canny

Figure 8: Reed and bubbles - bubble2283. jpg

original canny derivation
(cubic spline)

low antagonist high antagonist high antagonist zeros crossing
on canny on canny on derivation on canny

Figure 9: Winter - 1ion4439. jpg

18 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

derivation
(cubic spline)

—=rer)
)| i";)I‘ [=]

|20

1O 16

low antagonist high antagonist high antagonist zeros crossing
on canny on canny on derivation on canny

Figure 10: Winter - 1ion4126. jpg

3.2 Edge detection 19

3.2.3 Antagonistic filter

We already explained why there is a need to further process edge detected
images (cf. 3.2.1). The aim of the development of the antagonistic filter was
to optimize edge detected images as input into neural networks.

Before we show the MATLAB code of the antagonistic filter we want to
outline the ideas behind.

The interface looks like this:

[imgA,split,iMin,iMax] = antagonist(img, range, part, fThresh);
We provide an image , a selection <range> of the lower or upper in-
tensity range, an intensity value part <part>, as well as a frequency thresh-
old <fThresh>.

The algorithm works like this: We grayscale the image if not al-
ready done and calculate the histogram on the intensity values in the range
0 (black) .. 255 (white). This allows us to find the most frequent intensity,
called ’split’. It further helps us to determine the smallest intensity ’iMin’
and the highest intensity 'iMax’ that are not less frequent than the threshold
fThresh’.

Now, let us assume the high (resp. low) range was selected. We then calcu-
late how far we have to shift the intensity value iMax (resp. iMin) to reach
the maximum (resp. minimum) intensity allowed. Then we select all pixels
that are in the part % of the upper (resp. lower) range of iMax minus split
(resp. split minus iMin). The intensity of those selected pixels is first shifted
(as determined just before) and then all selected pixels are written into the
newly created image at their corresponding places. As we use a trick to
shift efficiently we have to clip the image at the intensity boundaries to stay
inside legal intensity values.

Antagonistic filter - source code

function [imgAntago,split,iMin,iMax] = antagonist(img,range,part,fThresh)
% (c) Thomas Duebendorfer, Februrare 2000, INI University/ETH Zurich

% e.g. [imgAntago,split,iMin,iMax] = antagonist(img,1,87,10);

YA get antagonistic image in high range of image img, using 87/, of high
YA intensity range and an intensity frequency threshold of 10 pixels

h

% IN:

% img MxN grayscale image (with intensity values in range [0,1])

% range extraction range: O (low), 1 (high)

% part percentage of intensity range between split point and boundary

YA (iMax for mode = O resp. iMin for mode = 1) in range [1,99]

% fThresh threshold: minimum frequency of an intensity to be accepted

20 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

original image log. hist of grayscaled image histogram of grayscaled image
= = - - » - * . -
canny filtered log. hist of canny histogram of canny
C.1 C.2 c3
7
- 6
5
4
a
2
1
L - Lo - - % 50 100 150 200 250
high antagonist on canny log. hist of high antagonist histogram of high antagonist
D.1 D.2 D3
T
! 6
5
4
o
2
1
L - "» = 00 50 100 150 200 250
low antagonist on canny log. hist of low antagonist histogram of low antagonist

Figure 11: Histograms to illustrate the antagonistic filter.

3.2 Edge detection

RETURN :
imgAntago
split
iMin

iMax

Purpose:

as iMin or iMax candidate (in pixels)
note: as a rule of thumb holds: the higher the fThres the
lower the part should be chosen

is the antagonistic MxN grayscale image of img (with intensity
values in range [0,11)

automatically determined split intensity value

minimum intensity value that has a frequency >= fThreshold
maximum intensity value that has a frequency >= fThreshold

Perform ’antagonistic’ filtering on a grayscale image that
was processed with an edge detection filter (preferably canny).
If finds the most frequent intensity value ’split’, the
minimum and maximum intensity values iMin and iMax that are
more or equal frequent than the threshold fThresh.

If the range is ’low’ then a black image is created and all
pixels with intensity values in the upper ’part’ J of

the range between split and iMax are inserted after having
shifted this part to max. intensity.

If the range is ’low’ then a white image is created and all
pixels with intensity values in the lower ’part’ J of

the range between iMin and split are inserted after having
shifted this part to min. intensity.

The results of the filter when used for images that were
processed by an edge detector before (as canny) are parti-
cularly suited to be feeded to neural networks.

% rescale intensity range from real [0,1] to integers [0,255]
if (isa(img,’double’))
imgAntagoTmp = floor(grayscale(img) * 255);

else

imgAntagoTmp = double(grayscale(img));

end

% check if part is a reasonable percentage
if (part <= 1)

part = 1;

elsif (part >= 99)

part =

end

h
h
h
h

99;

find split intensity value automatically

create histogram of img, [0:255] is number of bins and
their location returns frequency counts in iFreq,

bin locations in binLoc

[iFreq,binLoc] = hist (imgAntagoTmp(:), [0:255]);

% find max value and corresponding index (index range 0..255)

[c,il]

max (iFreq) ;

% most frequent intensity value (we will use it as the

22 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

% intensity split point)
split = binLoc(i);

% number of pixels that have split as their value
num_split = iFreq(i);

% find minium intensity satisfying frequency threshold
iMinIdx = min(find(iFreq >= fThresh));
if isempty(iMinIdx)
iMin = 0;
else
% convert index to intensity
iMin = binLoc(iMinIdx);

end

% find maximum intensity satisfying frequency threshold
iMaxIdx = max(find(iFreq >= fThresh));
if isempty(iMaxIdx)
iMax = 255;
else
% convert index to intensity
iMax = binLoc(iMaxIdx);
end

% ensure iMax and iMin to be in [0,255]
if (iMax > 255)

iMax = 255;
end
if (iMin < 0)
iMin = 0;
end

if (range == 0)
% low range
% shift and range
lowShift = iMin;
lowRange = split - iMin;

% boundary
iBMin = iMin + part / 100.0 * lowRange;

% shift selected dark intensity values and insert them into

% a new white imag. Note: We shift intensity values smaller

% than iMin (that are less frequent than fThresh) to negative

% values. Clipping adjusts this later.

imgAntago = 255 * ones(size(imgAntagoTmp)) ;

selectedIdxSet = find(imgAntagoTmp <= iBMin);

imgAntago (selectedIdxSet) = imgAntagoTmp(selectedIdxSet) - lowShift;

else
% high range

% calculate shifts and ranges
highShift = 255 - iMax;

3.2 Edge detection 23

highRange = iMax - split;

% boundary
iBMax = iMax - part / 100.0 * highRange;

% shift selected light intensity values and insert them into
% a new black imag. Note: We shift intensity values bigger

% than iMax (that are less frequent than fThresh) to values
% bigger than 255. Clipping adjusts this later.

imgAntago zeros (size (imgAntagoTmp)) ;
selectedIdxSet = find(imgAntagoTmp >= iBMax) ;
imgAntago (selectedIdxSet) = imgAntagoTmp(selectedIdxSet) + highShift;

end

% clip to [0,255]

% values < 0 become 0, values > 255 become 255
imgAntago (find (imgAntago > 255)) = 255;
imgAntago (find (imgAntago < 0)) 0;

% recalc intensity values to range [0,1]
imgAntago = double(imgAntago) / 255.0;

The file antagonistCannyHigh.m (3.2.3) implements the interface (cf. 3.2.4)
for the NVS framework and uses a fixed set of parameters for antagonist.m
(and calls canny). This allows to flexibly integrate new filters based on an-
tagonist into the NVS framework.

function [] = antagonistCannyHigh(imgIn,imgOut,tmpPath)
% antagonistic filtering (wrapper)

% IN:

% imgIn path to input image file

% imgOut path to output image file

% tmpPath path to temporary directory

% do canny first

tmpCanny = sprintf(’%s.canny.jpg’,img0lut) ;

canny = sprintf(’!./filters/canny.pl %s %s ’%s’,imgIn, tmpCanny, tmpPath);
eval (canny) ;

% remove imgOut
rmQut = sprintf(’!rm -f %s’,imgOut);
eval (rmOut) ;

% read canny output and apply antagonistic filter

img = imread (tmpCanny) ;

[imgAntago,split,iMin,iMax] = antagonist(img,1,87,10);
imwrite (imgAntago,imgQOut,’jpg’, ’Quality’,100);

24 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

3.2.4 Implemented edge detection filters

Interface:

The .m (Matlab) and .pl-files (Perl files) are just wrappers on MATLAB m-
files, KUIM and UNIX system binaries. The command line calling interface
is as simple as: filter.pl <inImg.jpg> <outImg.jpg> <tmpPath>, e.g.
canny.pl myInputImg.jpg myOutputImg.Canny.jpg /tmp.

Some filters require more than one step. Most KUIM filters produce their
output as IM-Files (a KUIM internal image file format) that has to be
converted to the JPEG format (using the KUIM ’type’ tool). The MATLAB
calling interface is straight forward too, e.g.:

antagonist (’myInputImg.jpg’, ’myOutputImg.jpg’,’/tmp’).

There is no return value as the output image is written as a side effect of
calling the function.

Rangecalc was written to do various useful calculations on the intensity
range of an image (extracting, windowing, histogram equalization and trim-
ming, smart splitting). It lead us to the development of the antagonistic
filter.

For further experiments there is also a gaussian blur filter (gauss.m) in-
cluded. Note that all antagonistic filters of table 4 use the core algorithm
implemented in antagonist.m. The perl scripts call KUIM binaries canny’,
'rangecalc’, "deriv’, "type’ and jpeg tools such as ’cjpeg’ (conversion to jpeg),
‘jpegtran’ (translations of jpeg images, e.g. grayscale). The temporary im-
ages are removed before writing to a destination using the UNIX command

rm’.

3.3 KUIM Toolkit
3.3.1 General

If you are not using Matlab to implement filters (e.g. rangecalc) you can
use the KUIM Toolkit [9] and write your filters in C. This is fast and many
libary functions (including reading and writing JPEGs) are provided.

The KUIM image processing system was implemented at the University of
Kansas to support teaching and basic image processing and computer vi-
sion research. The image file format and I/O libraries have been designed
for ease of use and portability to a wide variety of machines.

The KUIM system consists of over 100 general purpose and special purpose
programs implemented in C. In addition, there are Java based graphical user
interfaces for roughly 50 of these image processing programs which enable
the user to adjust input parameters and see their effects on corresponding

3.3 KUIM Toolkit

25

‘ Filter name Description ‘ Based on
canny.pl canny edge detection KUIM
zeros.pl 1. canny 2. zeros cross- | KUIM (canny)

ing

antagonistHigh.m

high antagonist

MATLAB (antag-

onist)
antagonistHighDetailed.m high detailed antagonist | MATLAB (antag-
onist)
antagonistLow.m low antagonist MATLAB (antag-
onist)
antagonistLowDetailed.m low detailed antagonist | MATLAB (antag-
onist)
antagonistCannyHigh.m 1. canny 2. high antag- | KUIM (canny),
onist MATLAB (an-
tagonist)
antagonistCannyHighDetailed.m | 1. canny 2. high de- | KUIM (canny),
tailed antagonist MATLAB (an-
tagonist)
antagonistCannyLow.m 1. canny 2. low antago- | KUIM (canny),
nist MATLAB (an-
tagonist)
antagonistCannyLowDetailed.m | 1. canny 2. low detailed | KUIM (canny),
antagonist MATLAB (an-
tagonist)

rangecalcCannyHigh.pl

rangecalcCannyLow.pl

1. canny 2. high range-
calc
1. canny 2. low range-
calc

KUIM (rangecalc,
canny)
KUIM (rangecalc,
canny)

rangecalcHigh.pl
rangecalcLow.pl
derivCubicSpline.pl
derivFinDiff.pl
derivRoberts.pl

derivSobel.pl

high rangecalc
low rangecalc

derivation (cubic spline
operator)

derivation (finite differ-
ences)

derivation (Robert’s op-
erator)

derivation (Sobel’s op-
erator)

KUIM (rangecalc,
canny)

KUIM (rangecalc,
canny)

KUIM (deriv)

KUIM (deriv)
KUIM (deriv)

KUIM (deriv)

Table 4: Implemented edge detection filters for the NVS framework

26 3 PREPROCESSING IMAGES FOR NEURAL NETWORKS

output images.

The KUIM system is similar in spirit to an earlier package called /usr/image
which originated at the University of North Carolina at Chapel Hill in the
1980’s under the direction of Prof. Stephen Pizer (smp@cs.unc.edu). Ques-
tions about KUIM and suggestions for improvement should be sent to Prof.
John Gauch (jgauch@ittc.ukans.edu).

3.3.2 Building your own filters

The list shows how to compile the file “rangecalc.c” with KUIM.
We assume that you have installed the free KUIM Toolkit (c.f. [9]) to
/home/myhome/kuim and that your filter source is named rangecalc.c and
resides in the path /home/myhome/kuim/rangecalc/rangecalc.c.

1. > tcsh

2. > setenv CC gcc

3. > setenv ARCH i686 /* see uname -m for i686 or 1586 */
4. > setenv KUIM /home/myhome/kuim

5. > cd /home//myhome/kuim/src/rangecalc

6. > make

All makefiles used by KUIM filters look almost identical. Only the destina-
tion filename has to be adjusted before compiling.

Remark: ARCH is now your machine architecture and KUIM is the path to
you KUIM Toolkit directory.

3.4 Fallacies

There is only one thing really worth mentioning. When working with MAT-
LAB you can easily convert a matrix A to a vector by using the :-Operator.
A(:) denotes the vector of matrix A in column first order. This means that
A(:) ==[A(L,1); A(2,1); A(3,1); ... A(1,2); A(2,2); ...]. When working with
the KUIM toolkit the image data is in a vector that uses row first order, i.e.
A(:) =[A(1,1); A(1,2) ...; A(2,1); A(2,2) ...]. This has to be remembered
when porting algorithms from MATLAB to KUIM in order to making them
not just faster but also keeping them correct.

27

4 Introduction to the NVS framework

When processing input data from external sources there are always similar
problems — how to read it in and how to connect the algorithms. For this
semester project, we decided to develop an interactive framework so that
users with only limited knowledge of Matlab would nevertheless be able to
work with it and get results. Because of the properties of the images in our
collection, it is called “NVS”, standing for “Natural visual stimuli”. It is
possible to use any image as input, natural or not.

4.1 General ideas

The goal of our semester project was to develop a neural network simulation,
which can be fed with the collected natural stimuli. The NVS framework
extends this idea by offering the user a graphical user interface (GUI) and
by encapsulating functionality into small, manageable modules. The exe-
cuting part of the simulation is separated — as far as possible — from the
user interface. The implemented NVS framework functionality of the real
important parts consists of:

e Read in collection of input images (JPG or TIFF), recognize desc.mat

e Choose input views

Use multiple filters

Build network

Feed network

Learn with two sites of synaptic integration

e Calculate statistics

and for the GUI
e New, Open and Save whole simulations, Load and Save settings

e Display progress and simulation state

Overall (mean) statistics output

Single image statistics output

Network activity output

e Winner weights output

Multiple dialog boxes for simulation settings and display options

28 4 INTRODUCTION TO THE NVS FRAMEWORK

4.2 How to use the framework

This section gives you a short introduction on how to use the framework as
a normal user. If you are interested in implementational details, please read
chapter 6 on the internas.

4.2.1 Control Panel

A graphical NVS Session can be started by first changing into the appro-
priate directory and typing nvs at the Matlab prompt. The first window
appearing is the Control Panel.

" L
Wikl &

Figure 12: The NVS Control Panel

At the moment it is not possible to use a text only Matlab command line
interface. However, most modules do not use any graphical output and can
be called while the simulation is not running.

4.2.2 Input settings

When creating a new simulation, it is advisable to start with the selection
of your input files. Please use the Settings — Input menu to open the input
dialog box (see below).

First, select your files (Choose...) You can choose a Matlab description file
(desc.mat) or a individual directory. The format of the desc.mat-File is
illustrated in 2.4. To select a directory, choose any file within and click Ok.
Next, you have to decide how the input layers of the network should be
mapped. For the network model which is used in our project, each of the 2
input layers is about 1/10 up to 1/5 the size of the original image. Thus,
overlapping can occur. You can select the maximum overlapping percentage.
Last, it is possible to use the same input image for more than one input set.
Each input set uses a different mapping.

4.2 How to use the framework 29

Input settings

laput images Choosze ... |

MvistrnpukaiimarsupilamiA0001 24 cimar su jpg

Mapping of mput layers

Positioning Strategy Fandom — |

Mazimurn overlagp (0-100%) 40% =i

Samples per Picture Orice = |

Ok I Update Mappingl Carnicel |

Figure 13: NVS Input settings

When you click the Ok button now, all filenames are read into memory and
internal structures concerning the input are initialized. This can be quite a
slow process. If you only wish to update the mapping of layers but not the
set of input files, you can use the Update Mapping button.

You can call the input settings box during a running (but stopped) simula-
tion. The effect of the changed settings is immediate. However, the network
is not reinitialized and all other internal structures (e.g. filters, framework)
remain the same. This is useful if you want to train a network for different
sets of stimuli or use other mapping parameters for parts of a set.

4.2.3 Network settings

The next thing you might want to do is adjusting the parameters for the
neural network itself, i.e. which network model should be used (only one
is implemented in the current version), how fast it should learn and how
strong the influence of the apical dendrite to the cell soma potential should
be. Please note that layer sizes are calculated automatically during the
initialization of the internal network structures. The desired size of the input
layers is used as parameter (be careful with that parameter). In order to
understand the internal effects of the parameters you can set please consult
[19].

As with the input settings, parameter changes don’t require a reinitializa-
tion of the network and are valid for all subsequent pictures in the current
simulation.

30 4 INTRODUCTION TO THE NVS FRAMEWORK

S Change heural netwark settings

Use network model 2-2-2-1 =1 |

Use presets For Mohe = |

Hetwork constants

Learning rate ooo
Foree cell soma activity an apical dendrite
Multiplier for lateral connections
Frustration addition per step

Self Inhikition factar

il

Size of input layers width

height 0

Ok

Iy]
5
2
S

Figure 14: NVS Network settings

4.2.4 Filters

Before the input layers are mapped onto the network, up to three filters are
applied serially to the original image. For a description of the different filter
types, please see the statistics section. The filter changes are immediate and
don’t influence other data of the current simulation.

= Filtering & Frep
= Filter 1 | Antagonistic high range = |
-l Filter 2 | RG-S |
- Filter 3 | PEGEC R I P |
ok Carcel |

Figure 15: NVS Filter settings

4.2 How to use the framework

4.2.5 Framework

The settings in this dialog box describe the overall behaviour of the simu-
lation and the graphical user interface. You can select which tasks should
be done and if, how often the output of a specific task should be displayed.
With the learning option turned off the effect of stimuli on a trained network
can be observed. If you run multiple simulations in parallel set the output

and intermediate directory to different locations.

W Feed network

= Filter input

W Learn

W Calculate single image statistics

W Calculate mean image statistics

Display windows

every n—th step

i
)|
)|
=
=

Input & filtered input image
Layer activities

‘Weights to winners

Single image statistics

Mean image statistics

Filter intermediate directory

thp.l’

Filtered image auput directory

thp.l’

Ok

I Cancel

Figure 16: NVS Framework settings

4.2.6 Display menu option

When running a simulation, you can fast-switch on and off the different
windows using the display menu. The options correspond to the ones in the

framework settings box.

32 4 INTRODUCTION TO THE NVS FRAMEWORK

4.2.7 Starting and stopping the simulation

Use the Start button in the control panel to run the simulation. You can
interrupt it at any time by clicking once on the stop button. The execut-
ing script needs some time to finish the running calculations, so please be
patient. While running, the progress is displayed on a progress bar in the
lower region of the control panel. When using the same input image for
multiple mappings, one step corresponds to one image, not one mapping.

WS Framework

o

Sirulation state: Learning...

I S408

3001

Figure 17: State display while running NVS simulation

Figure 18: Displaying input and filtered input image

4.2 How to use the framework

Original picture ﬂltered}

33

anner weg:ts :I

i
3!—?
. u

. P :
Winner weights 5 ‘Winner weights &

‘Winner weights 3 ‘Winner weights 4

Table 5: Display of network activity and network weights

34 5 STATISTICS

5 Statistics

The natural visual stimuli collected for our semester work have been sta-
tistically evaluated. We found out that natural visual stimuli have quite
similar characteristics in the frequency spectrum if we take the mean of a
large sequence of images. It also can be shown that the mean intensities
of a big set of stimuli produce an image that is greyed and shows no edges
anymore. The Marsupilami cartoon that was recorded from TV shows the
logo of the TV sender in the mean overall image which of course implies
that the upper left corner is not a good natural stimulus.

5.1 Measurements

We calculated the common statistical values for the intensities on the grayed
image and on the 2D discrete FFT of this image. This includes mean,
variance and standard deviation. The parameters minX and maxX show
how strong the values differ over all images in the sequence.

5.2 2D discrete FFT

There are quite some important rules one has to follow when using two
dimensional discrete FFT in Matlab. The image has to be padded (with
zeros per default) or the transformation will be errenous. The result has to
be shifted to obtain the DC coefficient in the middle (as it is common for
the continuous FFT). Details about the 2d discrete FFT can be found in
[8].

When using zero padding you should not be astonished about high amplitude
values on the frequency axes. There is an abrupt intensity change at the
image boundaries. We therefore calculated the statistics on the winter image
collection a second time after having filtered the intensity image with an
ellipsoidal surface. This made the effect on the axis vanish as expected (cf.
winterx in Table 7).

5.3 Improving 2D discrete FFT

When using zero padding you should not be astonished about high ampli-
tude values on the frequency axes. There is an abrupt intensity change at
the image boundaries. We therefore calculated for winter a second time
after having filtered the intensity image with an ellipsoidal surface. This
completely vanishes the effect of high amplitudes on the frequency axes.

5.4 Batch statistics using the NVS framework

The NVS framework was enabled to allow calculation of various statistics
on a single image and on all images processed so far. The two screenshots

5.4 Batch statistics using the NVS framework 35

show some sample values and give a good impression of the values provided.

1
T I
';:I"
- .'-.FI

Rk iz 1| e -
Inwerse FFT2 {top) and histogram FFT2 of grayscaled original I
Original image intensity FFT2 intensity values

Minimumm 0.023529 Mirirmum 1]

Mazimum 1 Maximum 32524 2169

i H 320x240 i H E12x512

Fixels FE00. Fizels 262144

Mear 057656 hean 17.4543

St Dew 0.26052 Sted Dew 151.5585

Wariance 0053025 Yariahce — 22969.9555

DC 442796

Figure 19: Statistics on a single image

36 5 STATISTICS

Crverall image stats (last: water0432 jpgd

Inverse FFT2 (top) and histoc Mean of complex FFT2

Overall image mean W m

#images 461
WeH 320x240
Fizels FeE00

Minirmum 0.005921

Mazirnum 1

Stol Dew MD.14738
Mean of abs{FFT2)
atd Desy 019962

Std Dew W 026255
Wariance M O.02172
Variance 0.041066
Sariance 0.088931

Figure 20: Statistics on a single image

5.4 Batch statistics using the NVS framework

5.5 Results - Plots

meanlmg

FFTmean2D

FFTmean2D

duplo

mean image ofgrayscaled original mages v 010 5500

men histogram ofgryscaled arignalimages . 012 6500

Tog(abs(SitAl L meanimg) on images v 010 6500

logfabs{statAl . meanabsimg)) on images .0 0 6500

0
100 “
150,

2
20
250 2
00
350 g
00

o
50
S0 L

w0 20 W0 w0 s

log(abs(staAl fft meanimg)) on images v. 01 6500

s
» g
10 P
2
o
1
10
a0 o
) 0
20 0 .,
00
Joo(abs(satAl fft meanAbsima) on images r. 0o 6500
15 g
0 g
B o

‘ o
w0
o

frame

mean mage o grayscal orgnal images 1. 010 500

8 I 5 g

mean Hstogram ofgrayscaled riginal mages v 010 500

og{abs(satAl . meanimg)on mages .0 0 500

s
B
100 “
150

g
20
250 2
00
as0. i
a0

o
as0.
500 -

10 20 0 w0 50

log(abs{statAL ftmeanabsimg)) on mages .00 500

0
100 “
150,

2
20
250 2
00
350 g
00

o
50
S0 L

00 20 W0 w0 s

Iog(abs(statAl . meanimg) on images v 0 500

s
» g
10

o
10
a0
) 0
20 0
00

house

mean image ofgrayscaled originl images v 010 4692

4

g

mean histogram ofgryscaled arignal images . 0 12 4892

Tog(abs(sitAl L meanimg) on mages i 010 4692

s
B
100 “
150

g
20
250 2
10
as0. i
a0

o
as0.
500 L

100 20 0 w0 50

log(abs{statAl . meanabsimg)) on images .0 t0 4852

0
100 “
150,

2
20
250 2
00
350 g
00

o
50
S0 L

w0 20 W0 w0 s

Joo(abs(satAl fft meanAbsima) on images r. 0o 4852

15

©
s *r
o
RS
B

Table 6: Intensity statistics of the duplo, frame

and house image

37

sequences

38 5 STATISTICS

meanlmg FFTmean2D FFTmean2D

Tog(abs(SatAl L meanimg) on images . 010 1600

men mage ofgrayscaed original mages .0t 1600

| [—
. .

,
:

!
iy

1 -
=

logfabs{statAl . meanAbsimg))on images .0 0 1800

st s 01100 . s o 0 150
o e s o s s
s
\
- . s
500 250 2
400, 300- 5 = 2
- \)
200 w0 o't Q
o :
: o
- B =
o 500 1 Ld 200 .
u es e O =

Tog(abs(SatAl L meanimg) o images . 010 4194,

mean mage ofgrayscaed original mages .0t 194

ogiabsistataL M meanimg)) on mages . 00 4194
s

+
3
2
1
o

100 20 0 w0 50 \

log(abs{satAl . meanAbsimg)) on images . 010 4194

° log(abs(statAll fi: meanAbsimg)) on images rv. 0to 4194
w
100- |
.
:
b)
- .
- € >
.
: -
o 00
- . S
e

Tog(abs(SatAl L meanimg) on images . 010 2000

mean isogram o grayscaled arignaimages v, 0o 4194

g

3

2

o

marsu

ean mage o gayscled o inges 1. 0102000 s R o) s . 010 060

« s
g » !.
s

- bz

1
- io

100 20 0 w0 50 \

logfabs{statAl . meanAbsimg))on mages .0 (0 2000

00 ° Joo(abs(statAlfft meanAbsimg))on images . 010 2000
FY
ast0) [«
100
3000 150, s g
s
2s00) 20 1 3
250 3
2000) 2
00 B -
1500] 0 " X
1000f 00 0LS X
as0- ° 0™ o
s0of ; w
S0 207 0

winter oy e m m

Tog(abs(SatAl L meanimg) o images . 00 2000

s
B ogfabsistatad R meanimg) on images . 010 2000
100 “
150 A »
200
250 2
10
as0. i
a0
o
as0.
500 N) .

100 20 0 w0 50

mean mage of gayscaled orgnal images . 010 2000

s w0 10 w2 A
log(absi{statAL . meanAbsimg))on mages .0 10 2000
mesn histogeam o grayscled oigina msges v 010 2000 g Joo(abs(statAlft meanAbsimg))on images . 010 2000
5 s
16000} 100 [«
s +
14000} 150, N
s2000] 200 © 3
20000] 250 3
[
socol 00 B
socol aso- i X
« 00
- as0- °
2000}
S0 N
w0 2o W 0 s o0)

winterx —_—

s

+

2

1

Table 7: Intensity statistics of the bubbles, marsu, winter and winterx image
sequences

5.6 Results - Values 39

5.6 Results - Values

Below you find all values calculated on the image sequences using Matlab
(and zero padding for 2D discrete FFT). The winterx sequence is the same as
the winter sequence except that an ellipsoid was used to filter the intensity
image before applying the 2D discrete FFT. You can clearly see the effect
of the ellipsoid when looking at the plots in in Table 7. The high amplitude
FFT values on the frequency axes have vanished as expected.

‘ H numlmg ‘ min ‘ max ‘ mean ‘ meanSd ‘ meanVar ‘

duplo 6501 0.00 | 1.00 | 0.68 0.16 0.03
frame 501 0.02 | 1.00 | 0.76 0.12 0.01
house 4893 0.05 | 1.00 | 0.68 0.15 0.02
intro 125 0.04 | 1.00 | 0.15 0.13 0.02
lion 4617 0.00 | 1.00 | 0.50 0.34 0.12
marsu 4195 0.00 | 1.00 | 0.61 0.21 0.04
bubbles 1801 0.00 | 1.00 | 0.00 0.14 0.02
winter 2001 0.00 | 1.00 | 0.56 0.30 0.09
winterx 2001 0.00 | 1.00 | 0.29 0.26 0.07

Table 8: Statistics from Matlab: statAll.orig - partl

‘ H minVar ‘ maxVar ‘ minSd ‘ maxSd ‘

duplo 0.00 0.11 0.01 0.33
frame 0.01 0.02 0.08 0.15
house 0.00 0.09 0.07 0.30
intro 0.00 0.05 0.02 0.21
lion 0.06 0.15 0.24 0.38
marsu 0.01 0.08 0.12 0.29
bubbles 0.01 0.02 0.12 0.15
winter 0.03 0.12 0.16 0.35
winterx 0.02 0.11 0.16 0.33

Table 9: Statistics from Matlab: statAll.orig - part2

40 5 STATISTICS
‘ H numlmg ‘ min ‘ max ‘ mean ‘ meanSd ‘ meanVar ‘ meanDC ‘
duplo 6501 0.00 | 50475.42 | 0.42 | 165.37 | 27538.83 | 52432.05
frame 501 0.00 | 46784.26 | 0.32 | 178.85 | 32186.62 | 58004.41
house 4893 0.00 | 43182.83 | 0.60 | 162.75 | 26733.93 | 51898.26
intro 125 0.00 | 11362.38 | 0.08 49.83 2762.18 | 11518.38
lion 4617 0.00 | 42337.87 | 0.31 147.76 | 22254.86 | 38046.65
marsu 4195 0.00 | 41849.51 | 0.55 | 153.50 | 23863.73 | 47028.02
bubbles 1801 0.00 | 34402.78 | 0.00 | 134.57 | 18318.44 | 43227.82
winter 2001 0.00 | 39287.38 | 0.57 | 150.79 | 23006.56 | 42876.61
winterx 2001 0.00 | 24791.01 | -0.00 96.78 9549.86 | 22178.88
Table 10: Statistics from Matlab: statAll.fft - partl
H minVar | maxVar ‘minSd ‘ ma,de‘ minDC ‘ maxDC ‘
duplo 7570.91 | 51234.27 | 87.01 | 226.35 | 28096.53 | 74677.77
frame | 24576.16 | 43804.46 | 156.77 | 209.30 | 51196.45 | 67892.10
house || 10408.58 | 37610.73 | 102.02 | 193.93 | 27551.92 | 63304.21
intro 687.31 5187.66 | 26.22 | 72.03 | 8579.33 | 14494.87
lion 9809.81 | 43022.84 | 99.04 | 207.42 | 24270.38 | 64952.48
marsu || 11840.54 | 37633.16 | 108.81 | 193.99 | 31748.81 | 61968.33
bubbles || 10398.08 | 23890.29 | 101.97 | 154.56 | 32156.27 | 49907.25
winter 7403.18 | 33349.62 | 86.04 | 182.62 | 23919.11 | 56732.00
winterx || 3248.71 | 16089.34 | 57.00 | 126.84 | 12685.18 | 31100.26

Table 11: Statistics from Matlab: statAll.fft - part2

41

6 NVS Implementation

This section describes the different modules of the framework and how they
interact with each other and the external world (input/output).

6.1 Module overview

The three primary design goals of the NVS module structure were:
e Small, simple and extensible modules
e Separating data calculation and user interface control
e Well documented reusable modules with a clear interface

Modules correspond to Matlab .m function files. The following drawing
shows, which modules call each other. For the UI modules controlPanel,
inputSettings, networkSettings, filterSettings and frameworkSettings there
exists additionally a callback routine which handles user actions.

For a detailed description of each module, please see below.

6.2 Interfaces

Instead of using Matlab function parameters, modules import structured
global variables. The advantage is speed. Global variables are accessed by
reference, function parameters by value.

The following global variable structs are used by the NVS modules (for a
detailed explanation, see later):

consts Constants which simplifiy program reading and writ-
ing

params Network parameters like learning rate, negative decay
factor and so on.

framework Everything that has to do with the framework and the
current state of the simulation

input Informations about selected input files and the current
input image

filters Available filters and optimized filter call structure

network All layers, weights and chosen network model param-
eters

stat Saved statistics on current image

statAll Saved overall statistics

6.3 Description of global variable structs

The purpose of this section is to explain every global structure in detail, so
that getting started with the already written code is as easy and smooth as
possible. The variables are sorted alphabetically.

‘ consts. *

ANDFORWARD =1

MAXFORWARD = 2

APICALPROJECTION = 3

AND-forwarding connection, using

Ij = wijAi

Maxmimum forwarding connection, using
I; = max(d], wijAi)

Lateral connection on apical dendrite

Used by:
UI/networkSettings.m

initParameters,

initNetwork, feedForward, learn,

‘ filters. * ‘
available cell array of available filters (id:char, name:char,
cmd:char). c¢md is the command executed when fil-
tering an image. For examples, see initParameters.
seq cell array containing names of filters to use (in this
order). This information is used primarily by the GUL.
calls cell array containing Matlab function calls for each se-

lected filter. %i, %o and %t are placeholders for the
input and output filename and the temporary inter-
mediate path (all paths are absolute).

Used by: initParameters, initFilters, filterlmage, UI/filterSettings

Finished, Restart

A

Stop button

Start button)
clicked

clicked

Resume
play

New Simulation Stop request

Stopped

Figure 21: Possible simulation states

42

6.3 Description of global variable structs

43

‘ framework. *

state Simulation state (see state diagram above), described
by the following constants:

IDLE do nothing...

PLAY in mainLoop, working

REQUESTSTOP User requested stop (pressed Stop button)

STOPPED Out of mainLoop

INIT Network not yet initialized

stateString Literal description of simulation state

gef Backup of figure number that is being drawn into.
When the controlPanel callback function interrupts a
drawing process, it restores the gcf to framework.gcf
when finished. If this is not done, the value of gcf
might be wrong.

startTime first image index read

endTime read until this image index

time current image index

tasks What the simulation should do (when value is 1).
Possible tasks are doFeed, doFilter doLearn, doSin-
gleStats, doMeanStats

display Which windows the simulation should display and up-
date (when value is 1). Possible windows are images,
weights, singleStats, activity, meanStats

drawActivityInterval, How often the separate windows should be updated (if

drawWeightsInterval, displayed). Value in time steps.

drawInputInterval,

drawSingleStatsInter-

val, drawMeanStatsIn-

terval

hControlPanel, hCon- | Handles to control panel figure and control button

trolButton

menuSim, menuSet- | Handles to control panel menu bar entries

tings, menuDisplay

hState Handle to control panel simulation state description

pbar Progress bar object; used by the progressBar module

‘ Used by: initParameters, initFilters, filterlmage, Ul/filterSettings

44 6 NVSIMPLEMENTATION
‘ input. * ‘
imWidth Width of input image
imHeight Height of input image
imType Type of current input image (’jpg’ or ’tif’)
desc Description of input fileset — text, author, date, title
fileFilter Cell array with file/path selections. This is used by
initInput to read in a list of files to be processed.
files File list structure read in by initInput. Each entry
contains a name (filename), pid (path id — index into
filePaths array) and a type (’jpg’ or tif’)
maxOverlap maximum overlap when mapping input layers (0..1)
posStrategy chosen mapping strategy, only used by chooselnput
and Ul
samplesPerlmage How many times to map input layers from the same

input image

tempPath, outPath

path for temporary file (filter intermediate) and fully
filtered images

currentPictureIndex index into files array, image currently being processed

currentImage, filtered- | planned, but not yet implemented: cache for original

Image and filtered input image

from, to use input selection [from,to]

isMat = 1, when a desc.mat file was opened

filePaths paths of fileFilter selections

viewPositions current mapping of input layers, set by chooselmage.
Matrix containing [left top width height;] for each
input layer of the network

thisSample

filteredPictureName absolute filename of fully filtered picture

Used by: almost all modules

| network. * ‘
modelName what network model is used (see initNetwork for the
description of network models)
numLayers total number of layers in current model
numlInputs number of input layers in current model
Used by: initParameters, initInput, initNetwork, chooselmage,

UI/networkSettings

6.3 Description of global variable structs

45

layers{1..numLayers}.* |

settings size = number of neurons in this layers
islnput = 1, if the layer is an input layer

input vector; size is number of neurons: summed input (is
reset at every time step by feedForward)

activity vector; size is number of neurons: cell some activity
of each individual neuron

apical activity at apical dendrite of each neuron

apicalQ saved activity, used by feedForward and learning mod-
ules

average vector; size is number of neurons: average activity of
each neuron

apicalaverage vector; size is number of neurons: average activity at
the apical dendrite of each neuron

time frustration level for each neuron; the higher this value,
the more probable a learning event is

winner number of winner neuron in this layer and time step

connections cell array, one entry for each connection (layer to layer)
targetLayer: which layer the connection is directed at
weights: matrix with n*m entries (full connect)
type: type of connection (see consts.*)
learnrate: learning rate for this layer

numLayers total number of layers in current model

numlInputs number of input layers in current model

Used by: initParameters, initInput, initNetwork, chooselmage,

UI/networkSettings

‘ stat. * ‘

from statistics beginning at this index

to statistics calculation ending at this index

singleFFT 2d discrete fft on a single image

sumFFT summed 2d discrete ffts

Used by: initParameters, mainLoop, calcStatistics, statistic,

UI/showSingleStatistics, UI/showOverallStatistic

46

6 NVSIMPLEMENTATION

statAll.orig — Textual statistics on original image

curlmg currently processed image

numlmg number of images used for the statistic
sumlmg sum of all image intensity values
sumHisto sum of all image intensity histograms
sumSd sum of standard deviation

sumVar sum of variances

min, max minimum, maximum of intensity values

minVar, maxVar

minimum, maximum variance

minSd, maxSd

minimum, maximum standard deviation

h, w

height, width in pixel

pixel, sumPixel

pixels per image, pixels of all images

meanlmg mean intensity image
mean mean intensity value
meanHisto mean histogram

meanSd mean standard deviation
meanVar mean variance

Used by: initParameters, calcStatistics, UI/showOverallStatistic

6.4 Description of individual modules

No user interaction

nvs

Starter script

!

initParameters
Initialize internal structures & default parameters

47

Ul modules

controlPanel
main control center for user

mainLoop <
iterate steps, do complete processing

|, initinput
generate files struct from given filepaths

l » initNetwork
initialize network, reset layers & weights

L » initFilters
initialize filter commands

l » chooselmage
set next image, define mapping of input

filter original image

| » calcStatistics
calculate single & overall statistics

|, setNetworkinput
map input layers from filtered image

|, feedForward
standard neural network feed forward

L, learn
learn with two sites of synaptic integration

grayscale -«

calculate grayscale of RGB-Image

statistic «—

calculate statistics for current image

external filters -—

wrapper scripts

Figure 22: The NVS module structure

6.4 Description of individual modules

|, inputSettings
network input, mapping

. networkSettings
learn rates, network model

|, filterSettings
choose filter sequence

L, frameworkSettings
user interface, output

L, filterimage B

drawActivity
filtered input & layer activity

drawlnput
original & filtered input image

drawWeightsWinner

network weights to layer winners

showOverallStatistics
overall statistics of processed images

showSingleStatistics
statistics of current image

This section describes the different modules and their inner working. The
code is well documented. For the interaction of modules, refer to the drawing

above.

48 6 NVSIMPLEMENTATION

6.4.1 nvs

The nvs start script sets additional search paths for Matlab modules (user
interface and filters) and calls initParameters to initialize default parameters
of the environment. This call is required for the correct working of all other
modules. Then, control is transferred to the control panel, which draws the
main window and returns afterwards.

6.4.2 initParameters

Initialize all global structures. The following tasks are done:

e Define available filters and external calls, set default filter(s)

Set default input size, strategy, paths and range

Reset single image statistics and overall statistics

Set parameter and constant values

Random number generator seed initialization

Default Framework settings (Output options, Tasks)

6.4.3 controlPanel

After the initialization, the nvs module starts the controlPanel. This mod-
ule makes heavy use of graphical user interface elements. It displays a Mat-
lab figure with a background image, a menu bar and a control (Start/Stop)
button. If no input has been previously selected, a default text is dis-
played (and defined here). Another important element in the control panel
is the progress bar, which may be initialized here and is displayed by the
progressBar module.

After finishing drawing, the control panel returns to the calling nvs mod-
ule, which in term returns control to the Matlab prompt. Control of the
simulation is handled by the controlPanel_Callback module.

6.4.4 controlPanel_Callback

When the user requests interaction in the control panel, this function is
called. The calling interface element passes a parameter to the callback,
which can be as follows:

e setInput, setNetwork, setFilters, setFramework, about call the
corresponding display window function

e updateState redraws the literal simulation state displayed above the
progress bar

6.4 Description of individual modules 49

e PlayStop
If no simulation is running, the framework state changes to PLAY.
Before running mainLoop, the network is initialized (initNetwork)
when running the first time. If a simulation is currently running, then
the callback has interrupted the mainLoop. To avoid recursion, the
callback sets the framework state to REQUESTSTOP. At the end of
each time step this variable is checked and the mainLoop can exit. At
this point, control goes back to the controlPanel_Callback where the
mainLoop was called initially. The reason for the polling of the stop
condition lies in the asynchronous behaviour of calls to GUI callback
functions.

e dispActivity, dispWeights, dispInput, dispMeanStats, dispSingleStats
are menu callbacks requesting to switch display of windows other than
the control panel on or off. The framework.display variable and
the menu are updated.

e simExit Close all windows, clear all variables and exit to Matlab.

e simNew Create new simulation; clear all variables and close all win-
dows. Ask user if sure, before doing it.

e simSaveAs Save the currently running simulation and settings to a
Matlab .mat-File. This may use up a lot of disk space.

e simSaveSettingsAs Save only the current settings

e simOpenSettings Open previously saved settings from Matlab .mat-
File

¢ simOpen Open previously saved simulation and settings

On each callback, the internal function restoreFigure is called. This is
because the callback might interrupt a current draw operation and change
the current figure. Other window drawing routines might draw into the
control panel accidentally without using this call.

6.4.5 mainLoop

The mainLoop is the main iteration loop of the simulation. It gets input
data from external sources, applies filters, feeds and trains the network and
calculates statistics. It also calls the necessary functions to output and
update input, network activity, weights and statistics.

The functionality is encapsulated into small modules (see module overview)
which are later explained in more detail and get called in the following
context and order:

50 6 NVSIMPLEMENTATION

e initFilters before beginning with the loop — to make sure all filter
calls are correct and up-to-date.

e chooselImage select next input image and map network input layers
e filterImage filter image using filter call sequence
e drawInput show filtered and unfiltered input image

e calcStatistics calculate single image statistics and update overall
statistics

e showSingleStatistics, showOverallStatistics

e setNetworkInput activates the input layer with the chosen mapping
e feedForward Activation is passed on to all other layers in the network
e learn Update network weights using encapsulated learning rule

e drawActivity shows the new layer activities

e drawWeightsWinner shows the network weights leading to the layer
winner neuron

e progressBar update coloured progress bar in control panel

mainLoop checks the framework.tasks and framework.display and only
executes functions and display if necessary.

If the user requests a stop (framework. REQUESTSTOP), the mainLoop
exits even if not finished yet with the loop. The simulation can later continue
at this point.

6.4.6 initInput

This function takes the input.fileFilter cell array which is normally set
by the inputSettings dialog and gets the corresponding files.

For each seperate path (entry in input.fileFilter array), the file type is de-
tected by looking at the extension of the first file. The files, type and index of
path are then appended to the existing input.files array, which contains
all file information from all paths in the end.

The Matlab deal function is used to assign path index and file types for
every array element. Unfortunately, this function seems to be quite slow if
there are a lot of files.

6.4 Description of individual modules o1

6.4.7 initNetwork

Before running the simulation, the network parameters, layers and weights
have to be initialized. This process depends on the selected network model.
Several steps are taken:

1. Set number of layers and layer sizes. The general layer size may depend
on the size of the input layers. Note that this size should be a square,
so that roots are integer values. This limitation could be removed in
a later version by rewriting the drawWeightsWinner module.

2. Define connection matrix and type of connections. The size of this
matrix is numLayers? and a connection is created by setting a con-
nection type value greater than 0 for the index (from layer, to layer)
in this matrix.

3. The learn rates for each layer are calculated using the global learning
rate factor and the layer size.

4. For each layer the input, activity, apical dendrite potential, frustration
time, average activity, average apical dendrite potential and the winner
neuron are reset.

5. For every connection the connection structure is setup and random
weights are assigned.

Now, the network is ready to go!

6.4.8 initFilters

Create the filters.calls array containing all Matlab functions to do the
whole filtering. The filters.seq array containing the filter id’s to use is
used as source.

6.4.9 chooselmage

This module is split in two parts. First, the next input image for the simula-
tion is chosen, and then the view positions which correspond to the different
input layers are calculated, using input.posStrategy.

The next input image is found by simply incrementing the index of the files
array. A modular wrap-around is used to ensure that there is always a next
image (e.g. if the simulation is longer than the image count).

For the view positions, a random strategy is implemented. A square region
within the image is randomly chosen, then a second square region is posi-
tioned left or right of the first. Value input.maxOverlap is the maximum
overlap factor that can occur.

92 6 NVSIMPLEMENTATION

6.4.10 filterImage

The current image is fed through one ore more filters. The processing is
defined by filters.calls. These calls are simple Matlab functions. How-
ever, before execution using eval, a string search and replace is done for %i,
%o and %t, to pass the input filename, output filename and a temporary
directory to the script. It’s also possible to call external programs, by using
the ! Matlab command.

The first filter uses the original image as input. Subsequent filters take its
output (which is saved in the intermediate temp directory).

6.4.11 calcStatistics

Read in the original image and convert to grayscale (grayscale). Statistics
are calculated on this single image using statistic). Further, a histogram
of intensity values is calculated.

Using the single image statistics, the overall statistics for statAll is up-
dated.

6.4.12 setNetworkInput

Read the filtered image into a matrix. For every input layer, the views from
input.viewPositions have to be mapped onto the network. This includes
a matrix to vector conversion, because layer activities are saved in vectors.
Also, the scale is adjusted from the range 0..255 (grayscale values) to 0..1
(activity values).

6.4.13 feedForward

There are several steps involved in activating the whole network, i.e. all
layers.

1. For all layers in the network, current cell soma activity is passed on to
the input in a target layer specified by the connection. Connections
from different layers are summed up at the target layer before activa-
tion. When forwarding signals, two different types of connections are
implemented:

(a) AND-Forwarding. This is the standard feedforward mechanism
in artificial neural networks (summed up weighted activity), using
the formula

I =Y wiA (6.1)

Implementation of AND-Forwarding is straightforward (vector
multiplication).

6.4 Description of individual modules 53

(b) MAX-Forwarding — Maximum of summed up weighted activity,
using the formula

Ij = maw(z ’UJiin) (6.2)

When implementing maximum feedforward, all possible weights
are multiplied with the activity of each neuron in the previous
layer. Then the maximum of each column is the value for the
neuron in the target layer.

2. Now that all input is summed up, the layer is activated. The summed

o.

up input is first smoothed by looking at the mean average activity.
Then, the layer self inhibition, which is params . SELFINHIBITION mul-
tiplied with the mean smoothed layer activity, is subtracted. Negative
activity is zeroed. Finally, activation is normalized between 0 and 1.
For each layer, the average is updated with current activity.

. The new activity is fed through lateral connections to the apical den-

drite of target layers. There, the potential is summed up again and
will define learning impact for each neuron in the target layer.

For every layer and neuron, the cell soma activation multiplied by
params .FORCEACTIVITY is added to the apical dendrite potential and
defines the total potential at the apical dendrite.

Average potential at apical dendrite is update by a non-linear function.

6.4.14 learn

When all cell activity and potentials at the apical dendrite are calculated,
the learning algorithm trains each layer.

1.

For each layer find the neuron with maximal potential at the apical
dendrite (winner) and set frustation time to zero for this neuron, in-
crease frustation time for all other neurons.

. Decrease weights by a negative value (params.NEGATIVEDECAY)

. Boost weights of winner neuron (learning event)

Add average time to all other weights leading to winner (multiplied
with params.AVGADD). The probability for a learning event increases
with time (frustration).

6.4.15 grayscale

Convert RGB image matrix to grayscale, using rgb2hsv.

o4 6 NVSIMPLEMENTATION

6.4.16 statistic

Calculation of actual image statistics. For a description of the used methods
and algorithms, please see chapter 5 on statistics calculation.

6.4.17 inputSettings, networkSettings, filterSettings, framework-
Settings

For documentation see the source code comments. For usage description,
see chapter 4.

6.4.18 drawActivity, drawInput, drawWeightsWinner, showOver-
allStatistics, showSingleStatistics

For documentation see the source code comments. For usage description,
see chapter 4.

95

A Tools

A.1 nameplus.pl

#!/usr/bin/perl
Batch renaming of files with sequence numbers
You have to uncomment the mv command to make it work

if (! (@ARGV eq 6)) {
print "usage:\n";
print "nameplus <suffix> <oldPrefix> <size0ldSeq> ";
print "<newPrefix> <sizeNewSeq> <seqIncr>\n";
print "e.g. rename intro000.tif - intro876.tif to ";
print "frame0O001.tif - frame0877.tif:\n";
print " > nameplus tif intro 3 frame 4 1\n\n";

exit;

}

$suffix = QARGV[0];
$01d_prefix = Q@ARGV[1];
$size_old_seqnr = QARGV[2];
$new_prefix = QARGV[3];
$size_new_seqnr = QARGV[4];
$increment = QARGV[5];

if ($increment > 0) {
$out = ‘1ls -r *.$suffix‘; # reversed
} else {
$out = ‘1ls *.$suffix‘;
}
@name = split(’\n’,$out);

$templ = "%0" . $size_new_seqnr . "d";

foreach $line (@name)
{
$num = substr $line, (length $o0ld_prefix),$size_old_seqnr;
$newnum = sprintf($templ, ($increment + $num));
$newname = $new_prefix . $newnum . "." . $suffix;
print "rename: $line --> $newname\n";
uncomment if you are sure what this script does
$do = ‘mv -f $line $newname‘;

}

o6 A TOOLS

A.2 batch.pl

#!/usr/bin/perl
Batch processing of a customized command
on all files of a directory

if (! (@ARGV eq 4)) {
print "usage:\n";
print "batch <command> <batchpath> <suffix> <arg3>\n";

exit;
}
$command = Q@ARGV[O0];
$batchpath = QARGV[1];
$suffix = Q@ARGV[2];
$arg3 = QARGV[3];
$out = ‘ls $batchpath‘; # get directory contents

@name = split(’\n’,$out);

foreach $line (@name)
{
$cmd = $command . " " . "$batchpath/$line" . " " .\
"${batchpath}_out/$line" . $suffix . " " . $arg3;
print "calling: $cmd\n";
uncomment if you are sure what this script does
$do = ‘$cmd‘;
+

B

o7

Bibliography

References

1]

2]

[4]

[6]

8]

B.1 Image Processing - Mathematics

Luc Van Gool, Introduction to Image Processing and Analysis,
Script of a lecture hold in winter 1999/2000 at ETH Zurich, Department
of Electronic Engineers

Theoretical background on image processing

Bernice E. Rogowitz, Thrasyvoulos N. Pappas (Chairs/Editors), Hu-
man Vision and Electronic Imaging IV, Proceedings of spie - The
International Society for Optical Engineering, Volume 3644, Belling-
ham, Washington

Overview of ongoing research activities on processing of natural visual
stimuli.

Mike Heath, Sudeep Sarkar, Thomas Sanocki, and Kevin Bowyer,
Comparison of Edge Detectors - A Methodology and Initial
Study, Computer Science & Engineering Department of Psychology,
University of South Florida, Tampa, Florida 33620, Dec 3, 1996
Comparison of Canny, Nalwa-Binford, Sarkar-Boyer and Sobel edge
detection algorithms with an evaluation using human ratings. Canny
seemed to be superior to the others.

J. Canny, A computational approach to edge detection, IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-8, 1986, 679-714 Canny edge
detection algorithm

S. Sarkar and K. L. Boyer, Optimal infinte impulse response zero
crossing based edge detectors, CVGIP: Image Understanding 54,
1991, 224-243 edge detection algorithms

Markku Hauta-Kasari, Computational techniques for spectral
image analysis, Lappenranta University of Technology, 1999, 1st part
Theoretical background about image processing

http://www.mathworks.com/
The manufacturer of Matlab provides a searchable support database,
user contributed m-files and guides to Matlab

Documentation of the Image Processing Toolbox,
http://www.mathworks.com/
Powerful tools for image manipulation in Matlab

o8 REFERENCES

[9] KUIM Toolkit, http://www.ittc.ukans.edu/ jgauch/kuim/kuim.html
Image processing toolkit supplying image filters in C source code using

the JPEG library

B.2 Image Processing - Biological Background

[10] David H. Hubel, Eye, brain and vision, Scientific American Library
cop. 1995 VIII, 242 p., New York [etc.]
Thorough explanations about how the human visual system transforms
visual stimuli.

[11] Randolph Blake, Cat spatial vision, Elsevier Publications, Cam-
bridge, 0378 - 5912/88, TINS, Vol. 11, No. 2, 1988 Fascinating details
about how good a cat can see.

[12] K.-P. Hoffmann, C. M. Morronet, and J. H. Reuter, A comparison
of the responses of single cells in the Ign and visual cortex
to bar and noise stimuli in the cat, Abteilung fiir Vergleichende
Neurobiologie, Universitat Ulm Oberer Eselsberg, D-7900 Ulm, Federal
Republic of Germany
Investigations on behaviour of LGN cells when a stimulus (bar) is sur-
rounded by partly masked other stimuli

[13] G. A. Orban, K.-P. Hoffmann, and J. Duysens, Velocity Selectivity
in the Cat Visual System. I. Responses of LGN Cells to Mov-
ing Bar Stimuli: A Comparison With Cortical Areas 17 and
18, Laboratorium voor Neuro- en Psychofysiologie, Katholieke Univer-
siteit te Leuven, Campus Gasthuisberg, Herestraat, B-3000 Leuven,
Belgium
Measurements of velocity characteristics and response latency of LGN
cells to moving bar stimuls.

[14] David Ferster and Bharathi Jagdeesh, Nonlinearity of Spatial Sum-
mation in Simple Cells of Areas 17 and 18 of Cat Visual Cor-
tex, Department of Neurobiology and Physiology, Northwestern Uni-
versity, Evanston, Illinois 60208
Spatial frequency measurements and comparisons of areas 17 and 18 to
LGN cells

[15] http://www.shortcourses.com/book01/07-03.htm, Information
about the TIFF image file format

[16] http://www.shortcourses.com/book01/07-03.htm, Information
about the JPEG image file format

B.3 Image Processing - Neural networks 59

[17] http://www.wlv.ac.uk/ ¢9653177/avi.html,
http://web.cs.mun.ca/kl12media/resources.formats.video.avi.html
Information about the AVI video file format

B.3 Image Processing - Neural networks

[18] Konrad P. Kording and Peter Koénig A learning rule for dy-
namic recruitment and decorrelation, Institute of Neuroinformat-
ics, ETH/UNI Zurich, Wintherthurerstrasse 190, 8057 Zurich, Switzer-
land
A learning rule for neural networks based on physiologically inspired
results

[19] Konrad P. Kording and Peter Konig Learning with two sites
of synaptic integration, Institute of Neuroinformatics, ETH/UNI
Zurich, Wintherthurerstrasse 190, 8057 Zurich, Switzerland
An neural learning rule for unsupervised neural networks based on phys-
tologically inspired results

60 C ACKNOWLEDGEMENTS

C Acknowledgements

We want to conclude with saying thank you to Dr. Peter Konig, Konrad
Kording and Prof. Bernasconi who supported our interesting work at the
Institute of Neuroinformatics INI at the University/ETH Zurich and gave
us many useful suggestions and ideas concerning our semester work.

